The impact of returning to a daytime schedule on sleep, performance and mood after simulated fixed and rotating split shift schedules

Stephanie Centofanti


Split shift schedules may be a suitable alternative to long shifts due to reduced accumulation of sleep pressure. However, returning to a daytime schedule (RTDS), performance and sleep deficits may occur as a result of changing the timing of sleep and wake periods. The current study investigated sleep, performance and mood during and following four 24h periods on fixed and rotating split shift schedules.


Twenty four participants (10M, 21-36y) completed a 9-day laboratory study with two 10h baseline sleeps (22:00h-08:00h); one of three shift conditions: one of two 6h on / 6h off schedules, (Fixed A: 5h-time in bed (TIB) at 03:00h/15:00h, or Fixed B: 5h TIB at 09:00h/21:00h), or an 8h on / 8h off schedule (Rotating: 6h40 TIB); and RTDS with 10h TIB for 2-nights (22:00h-08:00h).


The Fixed B condition had significantly less N3 sleep during RTDS compared to baseline (p<0.01). For all conditions, sleep onset latency, N2 onset latency and N3 onset latency were significantly longer during RTDS compared to baseline (p<0.05). Psychomotor vigilance was stable throughout the study. Subjective sleepiness (p<0.001) and positive affect (p<0.01) worsened during the shift schedule period but returned to baseline levels during RTDS. Negative affect increased during the shift schedule period and did not return to baseline levels upon RTDS (p<0.001).


Although differences in sleep and negative affect were observed upon RTDS, the fixed and rotating shift schedules did not substantially worsen performance during the shift schedule or after RTDS in controlled laboratory conditions that are ideal for sleep.


cognitive performance; mood; recovery; shift work; split shifts


Åkerstedt, T., & Gillberg, M. (1980). The circadian variation of experimentally displaced sleep. Sleep, 4(2), 159-169.

Åkerstedt, T., & Gillberg, M. (1990). Subjective and objective sleepiness in the active individual. International Journal of Neuroscience, 52(1-2), 29-37. doi: 10.3109/00207459008994241

Åkerstedt, T., & Wright, K. P., Jr. (2009). Sleep Loss and Fatigue in Shift Work and Shift Work Disorder. Sleep Med Clin, 4(2), 257-271. doi: 10.1016/j.jsmc.2009.03.001

Australian Bureau of Statistics: Working Time Arrangements. (2012). cat. no. 6342.0. Retrieved 20 July 2015, from

Belenky, G., Wesensten, N. J., Thorne, D. R., Thomas, M. L., Sing, H. C., Redmond, D. P., . . . Balkin, T. J. (2003). Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. J Sleep Res, 12(1), 1-12. doi: 10.1046/j.1365-2869.2003.00337.x

Borbely, A. A., & Achermann, P. (1999). Sleep homeostasis and models of sleep regulation. J Biol Rhythms, 14(6), 559-570. doi: 10.1016/b978-1-4160-6645-3.00037-2

Brunner, D. P., Dijk, D.-J., Tobler, I., & Borbély, A. A. (1990). Effect of partial sleep deprivation on sleep stages and EEG power spectra: evidence for non-REM and REM sleep homeostasis. Electroencephalogr Clin Neurophysiol, 75(6), 492-499. doi: 10.1016/0013-4694(90)90136-8

Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry research, 28(2), 193-213. doi: 10.1016/0165-1781(89)90047-4

Carskadon, M. A., & Rechtschaffen, A. (1994). Monitoring and staging human sleep. In M. H. Kryger, T. Roth & W. Dement (Eds.), Principles and practice of sleep medicine (pp. 943-960). Philadelphia: W.B. Saunders.

Costa, G. (1996). The impact of shift and night work on health. Appl Ergon, 27(1), 9-16. doi: 10.1016/0003-6870(95)00047-x

Costa, G. (2003). Shift work and occupational medicine: an overview. Occupational Medicine, 53(2), 83-88. doi: 10.1093/occmed/kqg045

Crawford, J. R., Garthwaite, P. H., Lawrie, C. J., Henry, J. D., MacDonald, M. A., Sutherland, J., & Sinha, P. (2009). A convenient method of obtaining percentile norms and accompanying interval estimates for self?report mood scales (DASS, DASS?21, HADS, PANAS, and sAD). British Journal of Clinical Psychology, 48(2), 163-180. doi: 10.1348/014466508x377757

Crawford, J. R., & Henry, J. D. (2004). The Positive and Negative Affect Schedule (PANAS): Construct validity, measurement properties and normative data in a large non?clinical sample. British Journal of Clinical Psychology, 43(3), 245-265. doi: 10.1348/0144665031752934

Crowley, S. J., Lee, C., Tseng, C. Y., Fogg, L. F., & Eastman, C. I. (2004). Complete or partial circadian re-entrainment improves performance, alertness, and mood during night-shift work. Sleep, 27(6), 1077.

Dijk, D.-J., Hayes, B., & Czeisler, C. A. (1993). Dynamics of electroencephalographic sleep spindles and slow wave activity in men: effect of sleep deprivation. Brain research, 626(1), 190-199. doi: 10.1016/0006-8993(93)90579-c

Dijk, D. J., & Czeisler, C. A. (1995). Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. The Journal of neuroscience, 15(5), 3526-3538.

Dijk, D. J., Duffy, J. F., & Czeisler, C. A. (1992). Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. J Sleep Res, 1(2), 112-117. doi: 10.1111/j.1365-2869.1992.tb00021.x

Dinges, D. F., Pack, F., Williams, K., Gillen, K. A., Powell, J. W., Ott, G. E., . . . Pack, A. I. (1997). Cumulative sleepiness, mood disturbance and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night. Sleep: Journal of Sleep Research & Sleep Medicine; Sleep: Journal of Sleep Research & Sleep Medicine.

Dorrian, J., Lamond, N., Holmes, A. L., Burgess, H. J., Roach, G. D., Fletcher, A., & Dawson, D. (2003). The ability to self-monitor performance during a week of simulated night shifts. Sleep, 26(7), 871-877.

Dorrian, J., Rogers, N. L., & Dinges, D. F. (2005). Psychomotor vigilance performance: Neurocognitive assay sensitive to sleep loss. In C. A. Kushida (Ed.), Sleep Deprivation- Clinical Issues, Pharmacology, and Sleep Loss Effects: Marcel Dekker New York.

Eriksen, C. A., Gillberg, M., & Vestergren, P. (2006). Sleepiness and sleep in a simulated "six hours on/six hours off" sea watch system. Chronobiol Int, 23(6), 1193-1202. doi: 10.1080/07420520601057981

Folkard, S., & Tucker, P. (2003). Shift work, safety and productivity. Occupational Medicine, 53(2), 95-101. doi: 10.1093/occmed/kqg047

Hansen, J. H., & Holmen, I. M. (2011). Sleep disturbances among offshore fleet workers. A questionnaire-based survey. International maritime health, 62(2), 123-130.

Härmä, M., Partinen, M., Repo, R., Sorsa, M., & Siivonen, P. (2008). Effects of 6/6 and 4/8 watch systems on sleepiness among bridge officers. Chronobiol Int, 25(2-3), 413-423. doi: 10.1080/07420520802106769

Jackson, M. L., Banks, S., & Belenky, G. (2014). Investigation of the effectiveness of a split sleep schedule in sustaining sleep and maintaining performance. Chronobiol Int, 31(10), 1218-1230. doi: 10.3109/07420528.2014.957305

Jay, S. M., Dawson, D., & Lamond, N. (2006). Train drivers' sleep quality and quantity during extended relay operations. Chronobiol Int, 23(6), 1241-1252. doi: 10.1080/07420520601083409

Kaida, K., Takahashi, M., Åkerstedt, T., Nakata, A., Otsuka, Y., Haratani, T., & Fukasawa, K. (2006). Validation of the Karolinska sleepiness scale against performance and EEG variables. Clinical Neurophysiology, 117(7), 1574-1581. doi: 10.1016/j.clinph.2006.03.011

Knutsson, A. (2003). Health disorders of shift workers. Occupational Medicine, 53(2), 103-108. doi: 10.1093/occmed/kqg048

Kosmadopoulos, A., Sargent, C., Darwent, D., Zhou, X., Dawson, D., & Roach, G. D. (2014). The effects of a split sleep–wake schedule on neurobehavioural performance and predictions of performance under conditions of forced desynchrony. Chronobiol Int, 31(10), 1209-1217. doi: 10.3109/07420528.2014.957763

Lamond, N., Dorrian, J., Roach, G. D., McCulloch, K., Holmes, A., Burgess, H. J., . . . Dawson, D. (2003). The impact of a week of simulated night work on sleep, circadian phase, and performance. Occupational and environmental medicine, 60(11), e13-e13. doi: 10.1136/oem.60.11.e13

Lützhöft, M., Dahlgren, A., Kircher, A., Thorslund, B., & Gillberg, M. (2010). Fatigue at sea in Swedish shipping—a field study. American journal of industrial medicine, 53(7), 733-740. doi: 10.1002/ajim.20814

Mollicone, D. J., Van Dongen, H., Rogers, N. L., Banks, S., & Dinges, D. F. (2010). Time of day effects on neurobehavioral performance during chronic sleep restriction. Aviat Space Environ Med, 81(8), 735-744. doi: 10.3357/asem.2756.2010

Mollicone, D. J., Van Dongen, H., Rogers, N. L., & Dinges, D. F. (2008). Response surface mapping of neurobehavioral performance: Testing the feasibility of split sleep schedules for space operations. Acta astronautica, 63(7), 833-840. doi: 10.1016/j.actaastro.2007.12.005

Monk, T. H., & Wagner, J. A. (1989). Social factors can outweigh biological ones in determining night shift safety. Hum Factors.

Rajaratnam, S. M., & Arendt, J. (2001). Health in a 24-h society. The Lancet, 358(9286), 999-1005. doi: 10.1016/s0140-6736(01)06108-6

Sanquist, T. F., Raby, M., Forsythe, A., & Carvalhais, A. B. (1997). Work hours, sleep patterns and fatigue among merchant marine personnel. J Sleep Res, 6(4), 245-251. doi: 10.1111/j.1365-2869.1997.00245.x

Short, M. A., Agostini, A., Lushington, K., & Dorrian, J. (2015). A systematic review of the sleep, sleepiness, and performance implications of limited wake shift work schedules. Scandinavian journal of work, environment and health. doi: 10.5271/sjweh.3509

Silber, M. H., Ancoli-Israel, S., Bonnet, M. H., Chokroverty, S., Grigg-Damberger, M. M., Hirshkowitz, M., . . . Penzel, T. (2007). The visual scoring of sleep in adults. J Clin Sleep Med, 3(2), 121-131.

Smith, C. S., Reilly, C., & Midkiff, K. (1989). Evaluation of three circadian rhythm questionnaires with suggestions for an improved measure of morningness. Journal of Applied psychology, 74(5), 728. doi: 10.1037/0021-9010.74.5.728

Tilley, A. J., Wilkinson, R., Warren, P., Watson, B., & Drud, M. (1982). The sleep and performance of shift workers. Human Factors: The Journal of the Human Factors and Ergonomics Society, 24(6), 629-641.

Van Dongen, H. P. A., Belenky, G., & Vila, B. J. (2011). The efficacy of a restart break for recycling with optimal performance depends critically on circadian timing. Sleep, 34(7), 917. doi: 10.5665/sleep.1128

van Leeuwen, W. M., Kircher, A., Dahlgren, A., Lützhöft, M., Barnett, M., Kecklund, G., & Åkerstedt, T. (2013). Sleep, sleepiness, and neurobehavioral performance while on watch in a simulated 4 hours on/8 hours off maritime watch system. Chronobiol Int, 30(9), 1108-1115. doi: 10.3109/07420528.2013.800874

Watson, Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol, 54(6), 1063. doi: 10.1037//0022-3514.54.6.1063

Watson, Wiese, D., Vaidya, J., & Tellegen, A. (1999). The two general activation systems of affect: Structural findings, evolutionary considerations, and psychobiological evidence. J Pers Soc Psychol, 76(5), 820. doi: 10.1037//0022-3514.76.5.820



  • There are currently no refbacks.